Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Crit Care Med ; 51(1): 103-116, 2023 01 01.
Article in English | MEDLINE | ID: covidwho-2161200

ABSTRACT

OBJECTIVES: Severe cases of COVID-19 pneumonia can lead to acute respiratory distress syndrome (ARDS). Release of interleukin (IL)-33, an epithelial-derived alarmin, and IL-33/ST2 pathway activation are linked with ARDS development in other viral infections. IL-22, a cytokine that modulates innate immunity through multiple regenerative and protective mechanisms in lung epithelial cells, is reduced in patients with ARDS. This study aimed to evaluate safety and efficacy of astegolimab, a human immunoglobulin G2 monoclonal antibody that selectively inhibits the IL-33 receptor, ST2, or efmarodocokin alfa, a human IL-22 fusion protein that activates IL-22 signaling, for treatment of severe COVID-19 pneumonia. DESIGN: Phase 2, double-blind, placebo-controlled study (COVID-astegolimab-IL). SETTING: Hospitals. PATIENTS: Hospitalized adults with severe COVID-19 pneumonia. INTERVENTIONS: Patients were randomized to receive IV astegolimab, efmarodocokin alfa, or placebo, plus standard of care. The primary endpoint was time to recovery, defined as time to a score of 1 or 2 on a 7-category ordinal scale by day 28. MEASUREMENTS AND MAIN RESULTS: The study randomized 396 patients. Median time to recovery was 11 days (hazard ratio [HR], 1.01 d; p = 0.93) and 10 days (HR, 1.15 d; p = 0.38) for astegolimab and efmarodocokin alfa, respectively, versus 10 days for placebo. Key secondary endpoints (improved recovery, mortality, or prevention of worsening) showed no treatment benefits. No new safety signals were observed and adverse events were similar across treatment arms. Biomarkers demonstrated that both drugs were pharmacologically active. CONCLUSIONS: Treatment with astegolimab or efmarodocokin alfa did not improve time to recovery in patients with severe COVID-19 pneumonia.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Adult , Humans , Interleukin-33 , SARS-CoV-2 , Interleukin-1 Receptor-Like 1 Protein , Treatment Outcome
2.
Nat Med ; 28(6): 1141-1148, 2022 06.
Article in English | MEDLINE | ID: covidwho-1900513

ABSTRACT

Research and practice in critical care medicine have long been defined by syndromes, which, despite being clinically recognizable entities, are, in fact, loose amalgams of heterogeneous states that may respond differently to therapy. Mounting translational evidence-supported by research on respiratory failure due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-suggests that the current syndrome-based framework of critical illness should be reconsidered. Here we discuss recent findings from basic science and clinical research in critical care and explore how these might inform a new conceptual model of critical illness. De-emphasizing syndromes, we focus on the underlying biological changes that underpin critical illness states and that may be amenable to treatment. We hypothesize that such an approach will accelerate critical care research, leading to a richer understanding of the pathobiology of critical illness and of the key determinants of patient outcomes. This, in turn, will support the design of more effective clinical trials and inform a more precise and more effective practice at the bedside.


Subject(s)
COVID-19 , SARS-CoV-2 , Critical Care , Critical Illness , Humans , Syndrome
3.
Crit Care Explor ; 3(12): e0570, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1605680

ABSTRACT

IMPORTANCE: Altered heart rate variability has been associated with autonomic dysfunction in a number of disease profiles, in this work we elucidate differences in the biomarker among patients with all-cause sepsis and coronavirus disease 2019. OBJECTIVES: To measure heart rate variability metrics in critically ill coronavirus disease 2019 patients with comparison to all-cause critically ill sepsis patients. DESIGN SETTING AND PARTICIPANTS: Retrospective analysis of coronavirus disease 2019 patients admitted to an ICU for at least 24 hours at any of Emory Healthcare ICUs between March 2020 and April 2020 up to 5 days of ICU stay. The comparison group was a cohort of all-cause sepsis patients prior to coronavirus disease 2019 pandemic. MAIN OUTCOMES AND MEASURES: Continuous waveforms were captured from the patient monitor. The electrocardiogram was then analyzed for each patient over a 300 seconds observational window that was shifted by 30 seconds in each iteration from admission till discharge. A total of 23 heart rate variability metrics were extracted in each iteration. We use the Kruskal-Wallis and Steel-Dwass tests (p < 0.05) for statistical analysis and interpretations of heart rate variability multiple measures. RESULTS: A total of 141 critically ill coronavirus disease 2019 patients met inclusion criteria, who were compared with 208 patients with all-cause sepsis. Three nonlinear markers, including the ratio of standard deviation derived from the Poincaré plot, sample entropy, and approximate entropy and four linear features, including mode of beat-to-beat interval, acceleration capacity, deceleration capacity, and the proportion of consecutive RR intervals that differ by more than 50 ms, were all statistically significant (p < 0.05) between the coronavirus disease 2019 and all-cause sepsis cohorts. The three nonlinear features and acceleration capacity, deceleration capacity, and beat-to-beat interval (mode) were statistically significant (p < 0.05) when comparing pairwise analysis among the combinations of survivors and nonsurvivors between the coronavirus disease 2019 and sepsis cohorts. Temporal analysis of the main markers showed low variability across the 5 days of analysis compared with sepsis patients. CONCLUSIONS AND RELEVANCE: In this descriptive statistical study, heart rate variability measures were found to be statistically different across critically ill patients infected with severe acute respiratory syndrome coronavirus 2 and distinct from bacterial sepsis.

4.
Crit Care Med ; 49(12): 2058-2069, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1528201

ABSTRACT

OBJECTIVES: To provide updated information on the burdens of sepsis during acute inpatient admissions for Medicare beneficiaries. DESIGN: Analysis of paid Medicare claims via the Centers for Medicare and Medicaid Services DataLink Project. SETTING: All U.S. acute-care hospitals, excluding federally operated hospitals (Veterans Administration and Defense Health Agency). PATIENTS: All Medicare beneficiaries, January 2012-February 2020, with an explicit sepsis diagnostic code assigned during an inpatient admission. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The count of Medicare Part A/B (fee-for-service) plus Medicare Advantage inpatient sepsis admissions rose from 981,027 (CY2012) to 1,700,433 (CY 2019). The proportion of total admissions with sepsis in the Medicare Advantage population rose from 21.43% to 35.39%, reflecting the increasing beneficiary proportion enrolled in Medicare Advantage. In CY2019, 6-month mortality rates in Medicare fee-for-service beneficiaries for sepsis continued to decline, but remained high: 59.9% for septic shock, 35.5% for severe sepsis, 30.8% for sepsis attributed to a specific organism, and 26.5% for unspecified sepsis. Total fee-for-service-only inpatient hospital costs rose from $17.79B (CY2012) to $22.98B (CY2019). We estimated that the aggregate cost of sepsis hospital care for the entire U.S. population was at least $57.47B in 2019. Inclusion of 14 months' (January 2019-February 2020) newer data exposed new trends: the cost per patient, number of admissions, and fraction of patients with sepsis labeled as present on admission inflected around November 2015, coincident with the change to International Classification of Diseases, 10th Edition, and introduction of the Severe Sepsis and Septic Shock Management Bundle (SEP-1) metric. CONCLUSIONS: Sepsis among Medicare beneficiaries precoronavirus disease 2019 imposed immense burdens upon patients, their families, and the taxpayers.


Subject(s)
Medicare/statistics & numerical data , Patient Acceptance of Health Care/statistics & numerical data , Sepsis/diagnosis , Fee-for-Service Plans/economics , Hospitalization/statistics & numerical data , Humans , Sepsis/economics , Sepsis/epidemiology , United States/epidemiology
5.
Crit Care Med ; 49(11): 1963-1973, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1467431

ABSTRACT

Given the urgent need for coronavirus disease 2019 therapeutics, early in the pandemic the Accelerating Coronavirus Disease 2019 Therapeutic Interventions and Vaccines (ACTIV) public-private partnership rapidly designed a unique therapeutic agent intake and assessment process for candidate treatments of coronavirus disease 2019. These treatments included antivirals, immune modulators, severe acute respiratory syndrome coronavirus 2 neutralizing antibodies, and organ-supportive treatments at both the preclinical and clinical stages of development. The ACTIV Therapeutics-Clinical Working Group Agent Prioritization subgroup established a uniform data collection process required to perform an assessment of any agent type using review criteria that were identified and differentially weighted for each agent class. The ACTIV Therapeutics-Clinical Working Group evaluated over 750 therapeutic agents with potential application for coronavirus disease 2019 and prioritized promising candidates for testing within the master protocols conducted by ACTIV. In addition, promising agents among preclinical candidates were selected by ACTIV to be matched with laboratories that could assist in executing rigorous preclinical studies. Between April 14, 2020, and May 31, 2021, the Agent Prioritization subgroup advanced 20 agents into the Accelerating Coronavirus Disease 2019 Therapeutic Interventions and Vaccines master protocols and matched 25 agents with laboratories to assist with preclinical testing.


Subject(s)
Antibodies/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19/therapy , Drug Development/organization & administration , Drug Discovery/organization & administration , Humans , National Institutes of Health (U.S.) , Pandemics , Public-Private Sector Partnerships , SARS-CoV-2 , United States , COVID-19 Drug Treatment
6.
Crit Care Med ; 50(3): 440-448, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1462521

ABSTRACT

OBJECTIVES: To determine the impact of coronavirus disease 2019 on burnout syndrome in the multiprofessional ICU team and to identify factors associated with burnout syndrome. DESIGN: Longitudinal, cross-sectional survey. SETTING: All adult ICUs within an academic health system. SUBJECTS: Critical care nurses, advanced practice providers, physicians, respiratory therapists, pharmacists, social workers, and spiritual health workers were surveyed on burnout in 2017 and during the coronavirus disease 2019 pandemic in 2020. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Burnout syndrome and contributing factors were measured using the Maslach Burnout Inventory of Health and Human Service and Areas of Worklife Survey. Response rates were 46.5% (572 respondents) in 2017 and 49.9% (710 respondents) in 2020. The prevalence of burnout increased from 59% to 69% (p < 0.001). Nurses were disproportionately impacted, with the highest increase during the pandemic (58-72%; p < 0.0001) with increases in emotional exhaustion and depersonalization, and personal achievement decreases. In contrast, although burnout was high before and during coronavirus disease 2019 in all specialties, most professions had similar or lower burnout in 2020 as they had in 2017. Physicians had the lowest rates of burnout, measured at 51% and 58%, respectively. There was no difference in burnout between clinicians working in ICUs who treated coronavirus disease 2019 than those who did not (71% vs 67%; p = 0.26). Burnout significantly increased in females (71% vs 60%; p = 0.001) and was higher than in males during the pandemic (71% vs 60%; p = 0.01). CONCLUSIONS: Burnout syndrome was common in all multiprofessional ICU team members prior to and increased substantially during the pandemic, independent of whether one treated coronavirus disease 2019 patients. Nurses had the highest prevalence of burnout during coronavirus disease 2019 and had the highest increase in burnout from the prepandemic baseline. Female clinicians were significantly more impacted by burnout than males. Different susceptibility to burnout syndrome may require profession-specific interventions as well as work system improvements.


Subject(s)
Burnout, Professional/epidemiology , COVID-19/epidemiology , Critical Care/statistics & numerical data , Intensive Care Units/statistics & numerical data , Personnel, Hospital/psychology , Adult , Critical Care Nursing/statistics & numerical data , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Pandemics , Patient Care Team/statistics & numerical data , Prevalence , SARS-CoV-2
8.
Crit Care Explor ; 3(5): e0402, 2021 May.
Article in English | MEDLINE | ID: covidwho-1254873

ABSTRACT

BACKGROUND: Acute respiratory failure occurs frequently in hospitalized patients and often begins outside the ICU, associated with increased length of stay, cost, and mortality. Delays in decompensation recognition are associated with worse outcomes. OBJECTIVES: The objective of this study is to predict acute respiratory failure requiring any advanced respiratory support (including noninvasive ventilation). With the advent of the coronavirus disease pandemic, concern regarding acute respiratory failure has increased. DERIVATION COHORT: All admission encounters from January 2014 to June 2017 from three hospitals in the Emory Healthcare network (82,699). VALIDATION COHORT: External validation cohort: all admission encounters from January 2014 to June 2017 from a fourth hospital in the Emory Healthcare network (40,143). Temporal validation cohort: all admission encounters from February to April 2020 from four hospitals in the Emory Healthcare network coronavirus disease tested (2,564) and coronavirus disease positive (389). PREDICTION MODEL: All admission encounters had vital signs, laboratory, and demographic data extracted. Exclusion criteria included invasive mechanical ventilation started within the operating room or advanced respiratory support within the first 8 hours of admission. Encounters were discretized into hour intervals from 8 hours after admission to discharge or advanced respiratory support initiation and binary labeled for advanced respiratory support. Prediction of Acute Respiratory Failure requiring advanced respiratory support in Advance of Interventions and Treatment, our eXtreme Gradient Boosting-based algorithm, was compared against Modified Early Warning Score. RESULTS: Prediction of Acute Respiratory Failure requiring advanced respiratory support in Advance of Interventions and Treatment had significantly better discrimination than Modified Early Warning Score (area under the receiver operating characteristic curve 0.85 vs 0.57 [test], 0.84 vs 0.61 [external validation]). Prediction of Acute Respiratory Failure requiring advanced respiratory support in Advance of Interventions and Treatment maintained a positive predictive value (0.31-0.21) similar to that of Modified Early Warning Score greater than 4 (0.29-0.25) while identifying 6.62 (validation) to 9.58 (test) times more true positives. Furthermore, Prediction of Acute Respiratory Failure requiring advanced respiratory support in Advance of Interventions and Treatment performed more effectively in temporal validation (area under the receiver operating characteristic curve 0.86 [coronavirus disease tested], 0.93 [coronavirus disease positive]), while achieving identifying 4.25-4.51× more true positives. CONCLUSIONS: Prediction of Acute Respiratory Failure requiring advanced respiratory support in Advance of Interventions and Treatment is more effective than Modified Early Warning Score in predicting respiratory failure requiring advanced respiratory support at external validation and in coronavirus disease 2019 patients. Silent prospective validation necessary before local deployment.

SELECTION OF CITATIONS
SEARCH DETAIL